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Abstract— The application of muttiresolution analysis to
Maxwell’s equations results in new multiresolution time-domain

(MRTD) schemes with unparalleled inherent properties. In

particular, the approach allows the development of MRTD
schemes which are based on scaling functions only or on a

comblnatiou of scaling functions and wavelets leadhg to a

variable mesh grading. The dispersion of the MRTD schemes
compared to the conventional Yee finite-difference time-domain
(FDTD) scheme shows an excellent capability to approximate

the exact solution with negligible error for sampling rates
approaching the Nyquist limit. Simple microwave structures
including dielectric materials are analyzed in order to illustrate

the application of the MRTD schemes and to demonstrate the

advantages over Yee’s FDTD scheme with respect to memory
~quirements and execution time.

I. INTRODUCTION

T HEfinite difference time-domain (FDTD) method has

proven to be a powerful numerical technique in elec-

tromagnetic field computation [1], [2]. Despite its simplicity

and modeling versrdity, however, the technique suffers from

serious limitations due to the substantial computer resources

required to model electromagnetic problems with medium or

large computational volumes. These limitations have always

made it a matter of great interest to improve the efficiency

of Yee’s FDTD scheme and have led researchers to the

development of various hybrid FDTD techniques [3], [4]

and higher-order FDTD schemes [5], [6]. This paper is not

about improving the efficiency of conventional FDTD, but

about new time-domain schemes with highly linear dispersion

characteristics resulting in significant reductions of computer

resources.

The method of moments [7] provides a mathematically

correct approach for the discretization of integral and par-

tial differential equations. The application of the method of

moments for tlhe discretization of Maxwell’s equations has

lead to the field theoretical foundation of the TLM method

[8], [9]. In adclition, it has been shown in [8] and [10] that

Yee’s FDTD scheme can be derived using the same approach

with pulse functions for the expansion of the unknown fields.

Since the metlhod of moments allows for the use of any

complete set of orthonormal basis functions, the use of an
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appropriate set may lead to new time-domain and frequency

domain schemes, In literature [11], [12], the use of scaling

and wavelet functions as a complete set of basis functions

is called multiresolution analyi$is. In this paper we show that

the application of multiresolution analysis in the method of

moments for the discretization of Maxwell’s equations leads

to new multiresolution time-dc}main (MRTD) schemes.

For the derivation of the MRTD schemes, the electromag-

netic fields are represented by a two-fold expansion in scaling

and wavelet functions with respect to space, The expansion

in terms of scaling functions only leads to the S-MRTD

scheme which allows for a correct modeling of smoothly-

varying electromagnetic fields. In regions characterized by

strong field variations or field singularities, additional field

sampling points are introduced by incorporating wavelets in

the field expansions. MRTD schemes based on both scaling

and wavelet functions are denoted throughout this paper by W-

MRTD schemes. In order to obtain two-step MRTD schemes

with respect to time, pulse functions are used as expansion

and test functions in time domain.

The S-MRTD and W-MRTD schemes are derived using

cubic spline Battle-Lemm_ie scaling and wavelet functions

[13], [14]. This orthonornml wavelet expansion has already

been applied successfully for the computation of electromag-

netic field problems in frequency domain [15], [16]. The

Battle–Lemarie scaling and wavelet functions do not have

compact support, thus the MRTD schemes have to be truncated

with respect to space. However, this disadvantage is offset by

the low-pass and band-pass characteristics in spectral domain,

allowing for an a priori estimate of the number of resolution

levels necessary for a correct field modeling. Furthermore, for

this type of scaling and wavelet functions, the evaluation of

the moment method integrals is simplified due to the existence

of closed form expressions in spectral domain and simple

representations in terms of cubic spline functions in space

domain.

The use of nonlocalized b;asis functions cannot accomm-

odate localized boundary conditions and cannot allow for a

localized modeling of the material properties. To overcome

this difficulty, the image principle is used to model perfect

electric and magnetic boundary conditions. As for the de-

scription of material parameters, the constitutive relations are

discretized accordingly so that the relationships between the

electric/magnetic flux and the electric/magnetic field are given

by matrix equations. A complete dispersion analysis of the

S-MRTD and W-MRTD schelmes including a comparison to

Yee’s FDTD scheme is given and shows the superiority of the
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MRTD method to all other existing discretization techniques.

Specifically, the results show the capability of MRTD to

provide excellent accuracy with up to two discretization points

per wavelength only, representing the Nyquist sampling limit.

II. THE S-MRTD SCHEME

At first, for simplicity, we will derive the S-MRTD scheme

for a homogeneous medium. The derivation is similar to that of

Yee’s FDTD scheme which uses the method of moments with

pulse functions as expansion and test functions [10]. For the

derivation of S-MRTD, the field components are represented

by a series of scaling functions in space and and pulse

functions in time. Furthermore, as for Yee’s FDTD scheme, the

field expansions of the magnetic field components are shifted

by half a discretization interval in space and time with respect

to the field expansions of the electric field components.

A. Derivation of the S-MRTD Scheme

Maxwell’s first vector equation

(1)

for a homogeneous medium with the permittivity E may be

written in the form of three scalar cartesian equations as

13HZ (3Hv _ C9EZ

—–—–Eat81J 8Z
(2)

8H. 8H. t3Ey

a.z – 8X ‘E at
(3)

In the same way, the second Maxwell’s vector equation for a

homogeneous medium with the permeability M

VxE=–p~ (5)

can be split into three scalar equations similar to (2), (3) and

(4). The electric and magnetic field components incorporated

in these equations are expanded as following

+m

E.(7, t) = E kEf1,2,m,nhk(t)@1+1,2(x)

k,l,m,n, =–cc

EV(F, t) =
F “kEl, m+l/2, n hk(t)~l(x)

k,l,m,n, =–m

+m

EZ(F, t)= x w%3n+l/2 hk(t)q$l(x)

k,l,m,n, =–m

“ &71(v) At+l/2(~)

+0s

HZ(7, t) =
E ~+1/2H&+l/2,n+1 /2h~+l/2(t)

k,l,m,n=–ix

o 41(x) #m+l/2(Y)f#n+l/2 (~)

Hv (F, t) =
E k+l/2H?:l/2, ~,n+l/2hk+l/2(t)

k,l,m, n=–cc

“ h+l/2(~)&7z(Y)q$n+ l/2(~)

+(x)

Hz(F’, t) =
x ‘zk+l/2Hl+1/2,~+1 /2,n h/c+l/2(t)

k,l,m,n=–m

“ h+l/2(x)din+l/2 (Y)&l(~) (6)

q5.where kEf~. and ~Hl,~l. with K = x, y, z are the coeffi-,>
cients for the field expansions in terms of scaling functions.

The indexes 1, m, n, and k are the discrete space and time

indices related to the space and time coordinates via x =

lAx, y = mAy, z = nzkz and t = kAt, where Ax, Ay, Az

and At represent the space and time discretization intervals in

x-, y-, z- and t-direction. The function h~ (%) is defined as

hn(z)=h(~–m
)

with the rectangular pulse function

(7)

{

1 for Izl < 1/2

h(x) = 1/2 for Izl = 1/2. (8)

o for 1x1> 1/2

The function #m(z) is defined as

A(z) = d(& -m ) (9)

where ~(z) represents the cubic spline Battle–Lemarie scaling

function [13], [14] depicted in Fig. 1. Assuming the Fourier

transformation

~(~) = ~+m ~(.z)e~~” dx (lo)
—cc

respectively, the closed-form expression of the scaling function

in spectral domain is given by [17]

(12)

with the low-pass spectral domain characteristics shown in

Fig. 2.

We insert the field expansions in Maxwell’s equations and

sample the equations using pulse functions as test functions in

time and scaling functions as test functions in space. For the

sampling with respect to time, we need the following integrals

[10]

/

+CO
hm(c)h~, (z) dx = 6m,~,Ax (13)

—m
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Fig. 1. Cubic splhe Battle–Lemarie scaling function in space domain.
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Fig. 2. Cubic spline Battte-Lemarie seating function in spectral domain.

where d~,~~ represents the kronecker symbol

6
{

1 forrn=rn’

“m’ = O for m # m’

and

(14)

For the sampling with respect to space, we use the orthogo-

nality relation for the scaling functions [17]

/

-l-co

@m(z)@m/ (z) dx = 8~,~IAz. (16)
—co

557

To calculate the integral corresponding to (15) for scaling

functions, we make use of the closed form expression of the

scaling function in spectral dolmain. According to Galerkin’s

method [7], for complex basis functions, one has to choose

the complex conjugant of the b;asis functions as test functions.

We then obtain

where ~(~) is given by (12). This integral may be evaluated
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TABLE I
THE COEFFICIENTSa(i)

i a(i)

o 1.2918462

L
1 -0.1560761

2 0.0596391

3 -0.0293099

4 0.0153716

5 -0.0081892

6 0.0043788

7 -0.0023433

8 0.0012542

numerically resulting in

The coefficients a(i) for OSi < 8areshownin Table I, and

the coefficients a(i) fori<O are given by the symmetry rela-

tion a( – 1 – i) = – a( i). The Battle–Lemarie scaling function

does not have compact but only exponential decaying support

and thus, the coefficients a(i) for i >8 are not zero. However,

we found that these coefficients are negligible, affecting the

accuracy of the field computation only for very low values of

the wave vector. We therefore use the approximation

in order to obtain a MRTD scheme useful for practical

applications.

As an example, we consider the discretization of (2). Sam-

pling the term on the right-hand side of this equation, dEx/i3t,

in space and time yields

Sampling the first term on the left-hand side, d~. /~y, in space
and time using the same test functions yields

=?
dz

kr+l/2Hl!+l/2,m, +l/2,nr 61,1!&,n&,k

k’,1’,m’,n’=–cc

(~~a(i)tim+,,m )AxA%At

J,=—g

(

= ~ a(i)k+l/2H$l/2,m+z+l/2,n

)

AxAZAt. (21)
?=—9

Proceeding in the same way with the term 3HY/~z, we obtain

a difference equation for a homogeneous medium with the

permittivity E

=&~ a(i)k+l,2H:,,2,m+,+,,,,.
%=—9

- +,5a(2)k+l,2H~,/2,m,n+,+,/2(22)
L=_-g

In order to provide a more compact form of this equation,

we use the state-space representation for the electromagnetic

field which was originally developed for the TLM method by

Russer et a[. [18]. We introduce the product space

and define the electric and magnetic field component vectors

lEdfi) and IH4.) with K = x, y, z as vectors in lt~~,

IE4N) =
E kE~z,nk l,m, n) (24)

k,l, m,n=–cc

and

+Cc

k,l,m,n=–cc

The orthonormal basis vectors of 7-&@* are given by the

ket-vectors

Ik; l,m, n) = I/f) B 11,m,n). (26)

The vectors 11,m, n) represent a system of orthonormal basis

vectors in the Hilbert space ‘H~, where each node with the dis-

crete coordinates (1, m, n) is assigned a basis vector IL,m, n).

In the Hilbert space ‘7-&, the basis vector \k) corresponds to

the discrete-time coordinate k. Due to the summation of k, i, m

and n, the electric field component vector IE4K ) combines all
@

electric field components kEl,m,,n of the COmplete mesh at all

discrete-time points k. The same is true for the magnetic field

component vector IH+.). Thus the complete time evolution

of a field component in four-dimensional space-time may be

represented by a single vector in %@t.

The bra-vector (k; 1,m, nl is the Hermitian conjugate of

\k; 1,m, n). The orthogonality relations are given by

To describe a shift of the field components in space and

time, we define the half shift operators Xh and its Hermitian

conjugate Xl by

X~lk; i,m, n) = Ik; l + l/2, m,n)

X~lk; l,m, n) =Ik; l – l/2, m,n) =X~llk; l,m, n) (28)

and the shift operators X and its Hermitian conjugate X+ by

Xlk; l,m, n) =Ik; l+ l,m, n)

Xtlk; l,mjn) = Ik; l – I,m, n) QX-llk; l,m, n). (29)
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In the same way, we define the half shift operators Yh and Zh
and the shift operators Y and Z for the spatial coordinates m

and n, the half time shift operator Tk for the time coordinate

k as well as their Hermitian conjugates.

Using the state-space representation, (22) may be repre-

sented by the operator equation

@@/t [Ejz)= x~T~(@ IH4.)–

where the difference operators dt, D$ and

di = A(T: – Th)

and

D: are defined as

(31)

(32)

Proceeding in the same way with the five remaining scalar

cartesian Maxwell’s equations, we obtain five difference equa-

tions. By introducing the field vector

P%)

11

~~{

1~$+)= IH4Z)

H~$y)
z

as a vector in the field state-space 7-lF

(33)

[10]

tiF=@’@?im@~t (34)

where C6 represents a six-dimensional complex vector space,

the six difference equations may be represented by the operator

equation

MlF+) = o (35)

where the operator A4 is given by (36), as shown at the bottom

of the page, where the operator D$ is defined in a similar way

as the operators D$ and D$.
The unit cell of the S-MRTD scheme, see Fig. 3, is similar

to the unit cell of Yee’s FDTD scheme. However, due to the

different field expansions, the field components ‘in the two

schemes are not identical. While the field components of Yee’s

FDTD scheme represent the total field at a space point, the

field components of the S-MRTD scheme represent only a part

of the total field. In fact, the total field at a particular space

~~,,,!---kn
)- Y

x

Fig. 3. Unit cell for the” S-MRTD scheme.

point for the S-MRTD scheme maybe calculated from the field

expansions, see (6), by sampling them with delta test functions

in space and time domain. For example, the z-component of

the total electric field E. (F., to) = Ez (XO, YO, zo, to) at an

arbitrary space point 70 at time to with (k– l/2)At < to < (k+

l/2)At is given by

E(FO, to) =
///s

EZ(7’, t)c$($ – $I))8(y – y0)8(.Z’– ~1))

. d(t – to) h dy Cl/zCM

“E kEtF1/,lm/,nr#l’+ 1/2(~o)#m’(Ye)

l’,m’,n’=–cc

. #n’(zO). (37)

Due to the exponentially decaying support of the Bat-

tle–Lemtie scaling function (see Fig. 1), only a few terms of

this three-dimensional summation have to be considered.

B. Dispersion Analysis

Due to the discretization in space and time, the FDTD

schemes exhibit deviations from the desired linear dispersion

behavior. In order to estimate these deviations, the dispersion

relation of a MRTD scheme has to be known. The method

for the calculation of the dispersion relation is described in

[19] and [20]. We use a general approach for the computation

of the dispersion relation which is based on the state-space

representation of the discretized electromagnetic field [8], [10].

Using this approach, the dispersion relation of the MRTD
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TABLE II
RESONANT FREQUENCIESFOR AN AIR-FILLED CAVITY

S-MRTD scheme

Analytic values (mesh size 2 x 4 x 3)

Absolute values Relative error

125.00 MHz 125.10 MHz 0.080 %

180.27 MHz 180.50 MHz 0.128 %

213.60 MHz 214.60 MHz 0.468 %

246.22 MHz 248.70 MHz 1.007 %

250.00 MHz 251.00 MHz 0.400 %

301.04 MHz 303.90 MHz 0.950 %

336.34 MHz 339.20 MHz 0.850 %

scheme is calculated from the solutions of the eigenvalue

problem in the field state-space.

The operator equation (35) requires

detiW(T’~,Xk,Y~,Z~) = O (38)

for any nontrivial solutions in the field state-space ?iF. Re-

stricting the investigations to electromagnetic fields composed

of plane waves, one obtains [10]

det A4(e-Jn12, e–Jx12, e–J~12, e–J<12) = O (39)

where !2 is the normalized frequency related to the frequency

j by O = 2~Atf = wAt. The normalized wave vector

components x, q and ( are related to the ~-, y- and z-

components of the wave vector ~, kx, kY and kz, by x =

Alkz, q = AllcY and < = Alk.. The evaluation of (39) yields

dt(fl) = o (40)

and

&p(dt(fl))2 = (Df(~))2 + (D:(q))z + (D$(f))z. (41)

The difference operator in frequency domain, dt (Q), and the

difference operators in wave vector domain. D$ (x), D$ (q).

and D!(~), are given by

and

= ~ ~a(i) sint(i + 1/2). (43)
.—n
.—”

Yee’s FDTD scheme

(mesh size 10x 20x 15)

Absolute values Relative error

124.85 MHz -0.120 %

179.75 MHz -0.288 %

212.40 MHz -0.562 %

244.50 MHz -0.699 %

248.70 MHz -0.520 %

298.95 MHz -0.694 %

334.35 MHz -0.592 %

Equation (40) represents the dispersion relation for the sta-

tionary solutions of the S-MRTD scheme corresponding to

the electro- and magnetostatic solutions, since d~(0) = O

implies Q = O, while (41) represents the dispersion relation for

the solutions propagating in the S-MRTD scheme. For small

arguments, using z w x, (41) yields

W2
—%k:+k:+k:
C2

(44)

which corresponds to the exact linear dispersion relation,

when all coefficients a(i) are considered. In this case, (44)

is identical to the dispersion relation of a three-dimensional

wave equation with the wave propagation velocity c.

While the stability condition for Yee’s FDTD scheme for a

uniform discretization with Ax = Ay = AZ = Al is given

by [1]

(45)

the stability condition for the S-MRTD scheme results in

At < At~ax = 0.368112~. (46)
c

The latter condition may be derived by requiring that for all

wave vectors, (41 ) must have a solution for real frequencies

!2 in order to obtain a stable MRTD scheme.

Figs. 46 illustrate the highly linear dispersion charac-

teristics of the S-MRTD scheme in comparison with the

dispersion characteristics of Yee’s FDTD scheme [19] for

uniform discretization. For wave propagation in (1, O, O)

direction and along the x-axis, respectively, we have used
q = O and ( = (). Similarly, for wave propagation in (1, 1, 0)

direction and along the diagonal in the x-y-plane, respectively,

wehaveused x=rland[= Oaswellas X=rl=(

for wave propagation in (1, 1, 1) direction. In contrast to

Yee’s FDTD scheme, it is not advantageous to choose At

at the stability limit but at about five times less. With this

choice, much more linearity of the dispersion characteristics

is achieved. In order to illustrate this linearity, in Figs. 4–6,

the same At = At ,n.X/5 has been chosen for both schemes.

The benefits of the highly linear dispersion characteristics

are illustrated in Table II, which shows the results for the

resonant frequencies of an air-filled cavity. The cavity has

the dimensions lm x 2m x 1.5m. For the analysis using Yee’s
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rri

Linear Dispersion
. Relation

Dispersion for the——
S-MRTD scheme

,,’ ---------- Dispersion for Yee’s
FDTD scheme

,;

/

n120
Q

Fig. 4. Dispersion diagram for S-MRTD for propagation in (1, O, O) direc-
tion.

n

rr12

,.,”
Linear Dispersion

,.,” Relation
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,.’ Dispersion for the) ——
,.,” S-MRTD scheme

,..,’
---------- Dispersion for Yea’s

,./ FDTD scheme

/

K rw20 @lo
Q

Fig. 5. Dispersion diagram for S-MRTD for propagation in (1, 1, O) direc-
tion.

FDTD scheme, a mesh with M = 0.1 m was used resulting in

a total number of 3000 grid points. Analyzing the cavity with

the S-MRTD scheme, a mesh with Al = 0.5m and with 24 grid

points, respectively, was chosen reducing the total number of

grid points by alfactor of 125. Furthermore, the execution time

for the analysis was reduced by a factor of nine to ten using the

rr

rr/2

,/;
,,,’

,/
/’”

)

/

/

/

,,,
,,,”

/-

,,,” /’ Linear Dispersion
,.,’ Relation

,..”’
Dispersion for the/’ —.

,,,” S-MRTD scheme
,?,” .--------- Dispersion for Yee’s

,.,,’ FDTD scheme
/,,,

n

Fig. 6. Dispersion diagram for S-MRTD for propagation in (1, 1, 1) direc-
tion.

S-MRTD scheme instead of Yee’s FDTD scheme. Note that

the time discretization interval At = 10– 10 s was chosen to

be identical for both schemes in order to exploit the linearity

of the dispersion characteristics for S-MRTD. In addition,

note that for the S-MRTD scheme, the relative error of the

resonant frequencies is always positive which corresponds to

an overestimation of the resona,nt frequencies. For Yee’s FDTD

scheme, the relative error of the resonant frequencies is always

negative corresponding to an underestimation of the resonant

frequencies. This is exactly what has to be expected from the

dispersion diagrams, see Figs,, 4–6.

Since the use of nonlocalized basis functions does not allow

localized boundary conditions, the perfect electric boundary

conditions in a S-MRTD meslh are modeled using the image

principle. This means that the perfect electric conductor (PEC)

is replaced by an open structure with symmetric electro-

magnetic fields. In particular, the electric field components

tangential to the PEC must have uneven symmetry in order

to ensure a field distribution with zero tangential electric

fields at the original position of the PEC. Furthermore, the

magnetic field components tangential to the PEC must have

even symmetry with respect to the original position of the

PEC. In the same way, perfect magnetic conductors (PMC’S)

may be modeled assuming uneven tangential magnetic fields

and even tangential electric fields with respect to the PMC.

III. W-MRT’D SCHEMES

In order to incorporate wavelets in the S-MRTD scheme,

we consider an additional term in the electromagnetic field

expansions using a set of wavelet functions. For simplicity,

we will consider wavelet expansion in one dimension and

in one resolution level only. Considering the wavelets for

the other dimensions and for the higher resolution levels is

straightforward. In particular, we will use additional wavelet
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Fig. 7. Cubic
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spline Battle–Lemarie wavelet function in space domain.

functions with respect to the y-coordinate. In the following,

the FDTD scheme derived by this field expansion is denoted

by Wy-MRTD scheme.

A. Derivation of the Wj-MRTD Scheme

In the following, we replace the expansions of the field

components, (6), by a two-fold expansion in scaling functions

and wavelet functions with respect to the y-coordinate. Thus

we expand the field components as following

+Cc

E.(7, t) = ~ (W!!,,,,m,.h(!)
k,l,m,n=–m

+ ‘E~+’l/2,m+l/2,n 4m+l/2(Y))

. hk(t)#i+l/2(X)@n(Z)

k,l,m,n=–cc

-E.(F’, t) = ~ (kE~:,.+,,i#bn(Y)
k,l,m,n=–cc

+ ‘E~;+l/2,n+l/2 4m+l/2(Y))

. hk(t)l#~(~)&+l/2(z)

+Cc

H.(F’, t) = ~ (k+l,2H~+~,2,n+~,2

k,l,m, n=–cc

“ &n+l/2(y) + k+l/2H$&+@@m(y))

X h’k+l/2(t)fjt(~ )&+l/2(z)

+Cc

HV(F, t) = ~ (k+l/2Hfl~/2,m,n+~/2@m(y)

k,l,m,n=–cc

+ k+l/2H:l/z,m+l/ 2,n+l/2 7L+l/2(Y))

X hk+l/2(~)$$t+l/2 (z)d~+l/2(z)

Hz(F’, t) = ~ (k+l/zH~~l/z,n+ l/z,n#m+l/z(y)
k,t,m,n=–cc

+ k+l/2H?+zl/2,m, n&l(Y))

x ~k+l/2(t)#l+l/2 (~)&l(~) (47)

where ~E~~,n ~d k Hl@J ~ with K = X, y, z are the eXl)aIISiOII

coefficients for the field expansions in terms of wavelet

functions. The function @n+l/z ($) is defined as

&+l/2(~) = ?J(j& - ~) (48)

where @(z) represents the cubic spline Battle–Lemarie wavelet

function [13], [14] depicted in Fig. 7. Note that the scaling

function has an even symmetry with respect to z = O,

whereas the wavelet function has an even symmetry with

respect to x = 1/2. This is the reason why we have denoted

the expansion coefficients for the wavelet expansions with an

index m’ = m + 1/2, where m represents the index for the

scaling function expansion coefficients. Note that in order to

include the resolution level t,one has to add the expansion in

terms of the wavelet functions

+.,m+l/2(x) = 2s/2+(2s: - m) (49)

withs = 1,2, . . ..t.

The closed form expression of

spectral domain is given by [17]

the wavelet function in

‘J’’z(:sin(+)tan(t))’—
1 – ~ sinz

(3+~sin4(3-~sin’(3
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Fig. 8. Magnitude of the cubic spline Battie-Lemtie wavelet function in spectral domain.

[

‘-:cosz(:)+:cos’(+~cos’(:).—
1--$ sinz

(~)+: sin’(:) -~sin’(:) “
(50)

the calculation of the integrals

/

+Cc

Fig. 8 exhibits the band-pass characteristics of the wavelet
13?Jm/+1/J2rJ dx

@m(z) ~z
function. In the interval IAI <2, the magnitude of the function -CC

~(k) is nearly zero. Thus in this interval, the scaling function

J

1 ‘-
q5(A)l~(A)lAsinJ(m’ + 1- m) d~

alone yields a correct representation of the electromagnetic
=—

7r~

fields which is reflected in the dispersion characteristics of the

/

+Cc
~~m’ (x) d:c

S-MRTD and Wy-MRTD scheme. It will be shown in the next *m(z) ~x

subsection that for a large frequency interval, the dispersion
—m

-1

1 ‘-
characteristics of both MRTD schemes exhibit no dispersion —— q5(A)l~(A)lAsinA(m’ – m) d~. (53)

error and no deviation from the linear dispersion relation, re-
‘7r0

spectively. However near discontinuities, the electromagnetic These integrals may again be evaluated numerically resulting

fields contain parts with higher spectral frequencies which calls in the approximations

for additional wavelets to be taken into account in order to +CO 8YnJ+l/z(Z) dx ~ ~ b(i)fi~fi m’
calculate the fields correctly.

/
@m(x) ~z

Again, we insert the field expansions in Maxwell’s equa- –CU i=—g

tions and sample the equations using pulse functions as test

functions in time. With respect to space, we use scaling and

wavelet functiolms as test functions. In addition to the integrals

(13), (15), (16)., and (19), we need to apply the orthogonality

relations [17]

/

+x
‘#m(X) ’l/Jmt (Z) dx = /im,m!~X (51)

-m

and

/+m4J7n(ZMn+V2(@ dx = O- (52)
—m

Furthermore, using the closed form expressions of the scaling

and wavelet function in spectral domain, (12) and (50) requires

where the coefficients b(i) andl c(i) for O < i ~ 8 are shown

in Table III. The coefficients b(i) and c(i) for i <0 are given

by the symmetry relations b(--l – i) = –b(i) and c(–i) =

—c(i). Due to the exponentially decaying support of the

Battle–Lemarie scaling and wavelet function, the coefficients

b(i) for i >8 and c(i) for i > !1 do not affect the accuracy of

the field computation significantly.

As an example, let us again consider the discretization of

(2). Sampling the term on the right side, dl?z/dt, with scaling
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TABLE III

THE COEFFICIENTSb(i) AND c(t)

1 0.9562282

2 0.1660587

3 0.0939244

4 0.0031413

5 0.0134936

6 -0.0028589

7 0.0027788

8 -0.0011295
I

91

-0.0465973

0.0545394

-0.0369996

0.0205745

-0.0111530

0.0059769

-0.0032026

0.0017141

-0.0009177

functions in space and pulse functions in time yields

///’

~ET
7j#l+1/z(z)@~(v) @T7(z)~k+l/2(~) dx dy dZ dt

= (k+lE!;~,z>m,n - kE?;~/z,m,n)AxAyA2 (55)

Sampling the same term using wavelet functions with respect

to the y-coordinate and scaling functions in space domain as

well as pulse functions in time domain yields

/J/~~~&+l/2(x)7Jm+1/2 (Y)@n(z)~kt1/2(~) ~X ~Y d“ dt

= (k+lEy’l,2,m+l/z,n - kE7&2,m+I,2,n)AxAyAz

Applying

~Hz/(’3y,

/’//

—

(56)

the same test functions in order to discretize

we obtain

~&+l/2(z)&n(Y)&Jz )~k+1/2(~) d% dy d’ dt

(~a(~)k+,,2H?J,,2m+t+l,2,n
2=—9

+9
.

)

t ~ c(2)k+l/2Hfi-l/2, m+i,n AxAZAt (57)
L=—g

and

(= 5c(i)k+l/2Hf:,/2 .m+z+l/2n
?=—9

+8

)

+ ~ b(z)k+l/2H:’l/2,m+i+l. ~xA~At” (58)
~=—g

We proceed in the same way with the term 8HY/~z and obtain

the two difference equations

j&k+lE:,,2,m,n- kE!’&,,m,n)

= &,5a(i)k+l/2Hcl/2,m+i+l/2,n

Z=—g

1
+9

+ — ~ @+l/2%&2,m+t,n
Ay

t=—g

- & f a(~)k+l,2Hfl,,2,m,n+,+,,2 (59)

L=—9

and

;(k+l%&2,m+l/2,n – @&2,m+l/2,n)

& ~ c(i)k+l,2H$l,z,m+t+~,2>n

%X—9

1
+8

+ — ~ ~(~)k+l/2HYl/2, m+i+l>n
Ay i=_9

- &.5 a(i)k+/2H~12,m+12,n+i+2 (60)
t=—g

Defining the electric and magnetic field component vectors

+m

lE@N) =
x

,E/+&lk; 1, m, n) (61)

k,l,m,n=–cc

and

IH+K) = ~ kH~:,nlk;z,m,n) (62)

k,l, rn,n=-cc

with K = x, y, z as vectors in %&t, we can represent(59)

and (60) by the operator equations

EX\T~dtlE4.) = X@j@$lH4J +D; IH+.) – @’lHA/))
(63)

and

The difference operators D$ and D: are defined as

‘$ =+YL~ b(i) Y-7
~=—g

D1 = & ,$’ C(i)Y-’.Y
J=—g

(65)

Since the operator D; describes the interaction between the

scaling and wavelet function expansion coefficients. we use the

index I to denote this operator. Proceeding in the same way

with the five remaining scalar cartesian Maxwell’s equations,

we obtain another ten different equations.

The unit cell of the WY-MRTD scheme is depicted in Fig. 9.

The number of independent field variables per unit cell is

twelve which is twice as much as for Yee’s FDTD scheme

and the S-MRTD scheme. The total field at a particular space

point for the Wy-MRTD scheme may be calculated from the

field expansions (47) by sampling the expansions using delta

test functions in space and time domain, e.g., the x-component
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Fig. 9. Unit cell for the Wy-MRTD scheme.
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Fig. 10. Dispersion diagram for Wy-MRTD for propagation in (O, 1, O)
direction.

of the total electric field En (?’o, to) at the arbitrary space point

POat time to with (k– l/2)At < tO < (k+ l/2)At is given by

E(rl(, tf)) = Ill./E.(F, t)ti(x – Xl))?i(y – yo)($(’z – Zlj)
.
, r5(t – to) dx dy dz dt

= y (W&,,m,n+m(!lo)
l’,m’,n’=–m

“+ @;l/2,m’+1/2,n r7&+l/2(Yo))

“ @l’+1/2($o)@n’ (~o) (66)

where, due to the exponentially decaying support of the

Battle–Lemarie scaling and wavelet functions (see Figs. 1 and

7), only a few terms of the three-dimensional summation have

to be considered.

x

1 /
2r! \

“\, ‘ ‘ ~

\\,
\

‘“’+
\

3rr12 ““+

‘“.,\ //
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Dispersion for the
rr —

WY-MRTD scheme
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FDTD scheme

>
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Fig. 11. Dispersion diagram for Wy-MRTD for propagation in (1, 1, O)
direction.
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Fig. 12. Dispersion diagram for W!{-MRTD for propagation in (1, 1, 1)

direction.

B. Dispersion Analysis

For the evaluation of (39), we have to

minant of a 12 x 12 matrix resulting in

d,(~) = O

and

calculate the deter-

(67)
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Fig. 13. Magnitude of the z-component of the electric field in frequency domain calculated by S-MRTD.

with

and

D:z(x, () = (D:(X))2 + (Dj(())z. (70)

The difference operators D! and D; in wave vector domain

are given by

(71)

Equation (67) represents the dispersion relation for the sta-

tionary solutions of the Wy-MRTD scheme corresponding to

the electro- and magnetostatic solutions, while (68) represents

the dispersion relation for the solutions propagating in the

WY-MRTD scheme. For small arguments, using z N r and

considering all coefficients a(i), b(i) and c(i), (68) yields

( )(g–k:–k; _k2 LJ2z
)

~–k:–49k:–k: =0 (72)

indicating the existence of spurious modes similar to those in

the TLM scheme with symmetrical condensed node [21], [22].
Choosing a uniform discretization, the stability condition

for the W-MRTD scheme based on wavelet functions in all

three dimensions is given by

At < 0.253064~ . (73)
c

Figs. 10–12 illustrate the effect of adding wavelets with re-

spect to the y-coordinate. To keep a!ll dispersion diagrams

consistent, for the W-MRTD and for the FDTD scheme, we

have chosen the same At = At~.X/5 as in Figs. 4-6. In

contrast to the dispersion diagrams shown in the previous

section, we have depicted the curves for the whole period

of the normalized wave vector component in order to give

a better insight in the nature of the dispersion curves. For

wave propagation in (O, 1, O) direction and along the y-axis,

respectively, we have used x = Oand f = O. Since there are no

wavelets in the direction of the x-axis, the dispersion diagram

for wave propagation in (1, O, O) direction is identical to Fig. 4.

The use of wavelets with respect to tlhe y-coordinate results

in a further increase of linearity of the dispersion relation for

wave propagation in this direction. However, there is now a

second branch of the dispersion curve in the interval O< ~ < m

and O< Q < z which is necessary to lmaintain the symmetry

of the dispersion curve with respect to X. This second branch

causes unphysical or spurious solutions for small frequencies

and small wave vectors as indicated by (72).

To demonstrate the existence of thle spurious modes, we

analyze the same cavity as in the previous section. However, to

keep things simple, we choose a mesh with Ax = 0.5m, Ay =

1 m and Az = 0.75 m resulting in al mesh with only eight

grid points. Figs. 13 and 14 depict tble magnitude of the Z-

component of the electric field in frequency domain calculated

by S-MRTD and Wy-MRTD. Since for the S-I$4RTD mesh,

there is only one z-component of the electric field in the

direction of the y- and z-axis, only the TEO,l,l and TE1,l,l

mode can be detected. However, the accuracy of the resonant

frequencies is still excellent. For the first resonant frequency,

the numerical value is 125.15 MHz and the relative error
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Fig. 14. Magnitude of the z-component of the electric field in frequency domain calculated by Wy-MRTD,

J--Yx

Fig. 15. Cavity half-filled with dielectric material

O.12%. For the second resonant frequency, the numerical value

is 195.6 MHz and the relative error O.176%. Note that for the

TE1, 1,1 mode, the electromagnetic fields are modeled by a

minimum of discretization points. E.g. for the x-component of

the electric field, the field distributions in y- and z-direction

are modeled by one field component and the field distribution

in z-direction by only two. Thus the result for this resonant

frequency demonstrates the capability of achieving excellent

accuracy for a ratio of the space discretization interval and the

wavelength close to one over two and close to the Nyquist

sampling limit, respectively.

The results for the Wy-MRTD scheme include another two

resonant frequencies. These two resonant frequencies represent
solutions which are spurious as it can be proven using the

dispersion relation (68). Inserting the values for the wave

vector components of the TEO, 1,1 mode, the dispersion relation

yields the two frequencies 125.15 MHz and 237.42 MHz,

which are identical with the numerical results of 125.15 MHz

and 237.40 MHz. The same identity holds for the TE1, 1,1

mode, for which the dispersion relation yields 195.57 MHz

and 281.10 MHz and the numerical analysis 195.55 MHz and

281.10 MHz.

Note that the relative error for the resonant frequency of the

TEO,l,l mode is identical for both FDTD schemes, whereas

for the TE1,l,l mode, there is a slight improvement to a

relative error of 0.15170 for the Wy-MRTD scheme. This is

in agreement with the dispersion dia,grams: For a frequency

interval up to the cutoff frequency of Yee’s FDTD scheme

[10], the dispersion characteristics of the S-MRTD and Wy-

MRTD schemes exhibit no dispersion error and no deviation

from the linear dispersion relation, respective] y. For larger

frequencies, the dispersion error is sllightly less for the Wy-

MRTD scheme. However, this small improvement with respect

to the accuracy of the resonant frequencies is offset by the

increase in computer memory by a factor of two and the

increase in execution time by a factor of 3.6. This increase

in computer resources and the existence of spurious solutions

in an infinite W-MRTD mesh indicate that wavelets should

only be used locally in regions chara~cterized by strong field

variations or field singularities. In the next section, we will

demonstrate the benefits of additional wavelets by analyzing

a microwave structure with a discontinuity of the material

properties.

IV. MODELLING SYMMETRIC

ANISOTROPIC DIELECTRIC MEDIA

In order to model symmetric anisotropic dielectric media,

we separate Maxwell’s first vector ec[ttation (1) in

vxH=g. (74)
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~ = E(7, t)~ (75)

where D represents the electric flux vector and E(F, t) the

space- and time-dependent permittivity tensor. Equation (74)

together with (5) is discretized as described in the two previous

sections. In the following, we will desctibe how to discretize

(75) using the method of moments. Note that symmetric

anisotropic magnetic media may be treated in the same way

by separating Maxwell’s second equation (5) in one partial

differential equation and one equation describing the material

properties.

In the principal coordinate system, the permittivity tensor e

for symmetric media is given by

[

&r(F, t) o 0
E(F,t) = o Eg(~, t)

1

0. (76)

o 0 &z(7,t)

In this case. (75) may be written in the form of three scalar

cartesian equations as

Dz = s.(F, t)llz (77)

Dv = SV(F, t)Ev (78)

Dz = Ez(~, t)~z. (79)

At first, we consider the discretization of (77)-(79) for field

expansions using only scaling functions in space domain.

Assuming that the field expansions of the electric field com-

ponents are given by (6), the elearic flux components have to

be expanded in a consistent manner as shown below

D.(F, t) =
E kD$;1,2,m,n~k(~) @l+l/2(~)

k,l,m,n=–cc

“ Ll(v)d%l(z)
+CG

DV(F, t) =
x “’kDl,m+l/2,n

hk(t)$$~(~)

k,l,m, n=–cc

“ An+l/2(!/)d%(~)

DZ(F, t) =
E kD~;,n+~/2 hk(t)~~(%)

k,l,m,n=–m

“ &rl(Y)4n+l/2(~) (80)

Ip&where ~Dl,~ ~ with K = x, y, z are the expansion coefficients

for the field ~xpansions in terms of scaling functions.

We insert the field expansions in (77)–(79) and sample the

equations using pulse test functions with respect to time and

scaling test functions with respect to space. Assuming

&. (~, t) = CK(T)&K(tJ)EK(Z) &K(t) (81)

and sampling e.g. (77) with ~l+llz(x)~~(y)d~(~)hk(t) yields

4X
kDl+~/2,m,n = E ‘?:ll+l/2,1+1/2E?Gm,mr

k’,l’, mf, n’=–cc

“ c$~n,n’E~t)k, k’k
,E@

l’+1/2,m’,n’ (82)

2

0
1

2

3

4

5

6

7

8

9

10—

TABLE IV
THE COEFFICIENTS B, AND C,

B,

1.96976160

-0.67243039

0.26870415

-0.11851986

0.05519138

-0.02652026

0.01299809

-0.00645742

0.00323979

-0.00163770

0.00083276

c,

2.89173391

-2.00521039

0.54227884

-0.01207123

0.14408849

-0.14591233

0.00301822

0.02834407

0.01914911

-0.02246183

where E@x
(K)m,m’ and ‘:t)k,k’

are integrals given by

~fjz

/

L #m(K) Ez(K)#m, (K) dK
(K)m,mr = AK

(83)

and

/
~ hk(t)eZ(t)hk, (t) dt.‘~t)k, k’ = ~k (84)

Defining the electric flux component vectors

lD@) = ~ kD~;,nlk;l,m,n) (85)

k,l,m,n=–cc

as vectors in ?-tm@t, (82) may be represented by the operator

equation

X~lD@z) = X~e4r lE@z) . (86)

The operator ~dz is given in dyadic notation by

+m

E&x =
z

y Iw)m+:,l,l
k,l,m,n=–cc kr,l[,mt,n{=–cc

, #x
(lh,m’&~i,n’&~t)k, k’(k’; 1’, ~’, ~’1.

(87)

The operator equation (86) represents the general discretization

for time- and space-dependent symmetric anisotropic dielectric

media. Note that the integral with respect to time may also

be evaluated in frequency domain allowing the modeling of

frequency-dependent dielectric media described by &(F’,w).

For the evaluation of the integrals (83), we use a sim-

ple representation of the scaling function in terms of cubic

spline functions [16]. The cubic spline Battle–Lemarie scaling

function in space domain may be expressed as

@(z) = y B@(z -i) (88)

%=—a

where the cubic spline function B(x) is defined as

[

2
-Z2+W forlzl<l

z 2

B(z) = 12 – IZI)3
6(

forl<lz~2 (89)

o for Izl >2.
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TABLE V
RESONANT FREQUENCIESFOR A CAVITY HALF FILLED WITH DIELECTRIC MATERIAL

Analytic values

18,627 MHz

27.172 MHz

29.375 MHz

35.069 MHz

~:;%

Absolute values Relatwe error Absolute values Relatwe error

27.350 MHz 0.654 % 27.140 MHz -0.119 %

29.580 MHz 0.699 % 29.215 MHz -0,544 %

35.280 MHz 0.601 % 34.970 MHz -0.283 %

Table IV gives some of the expansion coefficients 13i. Usually,

the coefficients B; for z >9 will be negligible. The coefficients

Bi for z <0 are given by the symmetry relation B, = B_i.

Table V exhibits the results for the first four resonant

frequencies of the cavity depicted in Fig. 15, where one half

is filled with dielectric material with a relative permittivity of

CT = 64 and the other half is filled with air. The cavity has

the dimensions lm x 2m x 1.5m. For the analysis using Yee’s

FDTD scheme, a mesh with Ai = O.lm was used resulting

in a total number of 3000 grid points. Analyzing the cavity

with the S-MRTD scheme, a mesh with Al = 0.5m was

chosen reducing the total number of grid points by a factor

of 125. The time discretization interval At = 0,9. 10– 10s

was again identical for both schemes as well as for the Wy-

MRTD scheme used later on. In comparison with Yee’s FDTD

scheme, the execution time for the analysis using the S-MRTD

scheme was reduced by a factor of nine to ten. Modeling the

cavity depicted in Fig. 15, the nonzero matrix elements of the

permittivity tensor in cartesian components are given by

ek(~, t) = eK(y). (90)

For S.(y), considering the image principle and a periodic

structure with respect to the y-coordinate, respectively, we use

{

1 for yo(21V – 1)< y < 2yoll
‘“(y) ‘= 64 for 2yoN < y < yo(2N + 1)

(91)

with IV = –m,. . . ,–1,0, 1, . . . ,m. The cavity is centered at

y = O and has the length YO with respect to the y-coordinate.

The operator &@Zreduces to

Now the operator equation (86) gives rise to a linear matrix

equation which c’hn be inverted before program execution.

Note that the use of

{

1 for y <0’
&x(y) = 64 fory>() (93)

simplifies the evaluation of the integral (83), however it

provides only an approximation of the correct matrix equation,
since the mesh is so small that some major matrix elements

have to be neglected. Note that for larger meshes, the use of

(93) yields results with good accuracy when a matrix of the

size 7 x 7 and larger is used.

We consider the discretization of (77) for field expansions

with scaling and wavelet functions in space domain. With

respect to the cavity half-filled with dielectric material, one

can only expect an improvement for the accuracy of the

resonant frequencies by adding wavelets with respect to the

y-coordinate: The field distribution of the modes area product

of the field distributions in x-, y- and z-direction. The spec-

tral representations of the distributions in z- and z-direction

contain only parts with low spectral frequencies. Thus the

field expansions in terms of scaling functions allow a correct

modeling of these distributions. The spectral representation

of the field distribution in y-direction, however, does contain

parts with high spectral frequencies due to the discontinuity

at y = O. Therefore, additional wavelets with respect to the

y-coordinate have to be introduced to ensure a correct field

representation.

Adding wavelets with respect to the y-coordinate, we ex-

pand the electric field components according to (47). Using

similar field expansions for the electric flux components, we
sample (77) with the functions #z+liz(z), #m (Y), A(z) and

hk(t) as well as with 4U+I/2(X), 7JJm+1/2(Y), At(z) and ~~(~)-

Assuming a permittivity tensor according to (90), we obtain

,D~l,z,~,. = ~ cE~~m,rn kE&,2,m,n
~!=—w

Ellz
+ ‘~~)m,m.1+1/2 k 1+1/2, m1+l/2,n ) (94)

and

+m

lD@J =
x

~D~&,n\k; l,m, n) (98)

k,l,m,n=–m,
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TABLE VI

RESONANT FREQUENCIESFOR A CAVITY
HALF-FILLED WITH DIELECTRIC MATERIAL

Wy-MRTD scheme

Analytic values \ (mesh size 2 x 4 x 3)

Absolute values Relative error

18.627 MHz 18.640 MHz 0.069 %

27.172 I@z 27.240 MHz 0.249 %

29.375 MHz 29.470 MHz 0.324 %

35,069 MHz 35.175 MHz 0.302 %

as well as the operators

(99)

and

&Ix = 5 lm)+j~m,ml(m’l. (100)
Tn,ml=-’x

Equations (94) and (95) may be represented as

and

A simple representation of the wavelet function in space

domain in terms of cubic spline functions [16] allows an

easy numerical evaluation of the integrals in (96) and (97).

The cubic spline Battle–Lemarie wavelet function may be

expressed as

+(Z) = y C,B(2Z -2) (103)
~=—m

where some of the expansion coefficients C~ are given by Table

IV. The coefficients C“, for i <1 are given by the symmetry

relation C, = CZ_,.

The results for the resonant frequencies of the cavity with

dielectric material using the Wy-MRTD scheme are shown in

Table VI, In comparison to the results calculated by the S-

MRTD scheme, the accuracy of the resonant frequencies is

increased by a factor of two and more. On the other hand,

there is an increase of the computer memory and execution

time by a factor two and three. These results confirm that

wavelets should be used locally in regions characterized by

strong field variations in order to improve the accuracy of the

field computation.

V. CONCLUSION

MRTD schemes based on orthonormal wavelet expansions

have been derived and applied in the numerical analysis of

simple microwave structures. The new schemes exhibit highly

linear dispersion characteristics which result in the capability

of providing excellent accuracy for a discretization close to the

Nyquist sampling limit. Thus the minimum discretization for

accurate MRTD results is close to two points per wavelength,

whereas it is usually about ten points per wavelength for

accurate FDTD results. This explains why the results for

FDTD and MRTD exhibit about the same accuracy while

using a MRTD mesh with five times less grid points per

dimension. In comparison with Yee’s FDTD scheme, our

three-dimensional examples suggest computer savings of one

order of magnitude with respect to execution time and two

orders of magnitude with respect to the memory requirements.

It has been shown that the use of scaling functions in the

method of moments leads to the S-MRTD scheme which al-

lows a correct modeling of the electromagnetic fields provided

their representation in spectral domain does not contain parts

with high spectral frequencies. When the spectral domain

representation of the fields does contain parts with high

spectral frequencies, additional wavelet functions have to

be considered, It has been demonstrated how to include

wavelets in order to derive W-MRTD schemes based on

both scaling and wavelets functions, However, these schemes

are not efficient in the electromagnetic field modeling of

homogeneous regions. Furthermore, the existence of spurious

solutions leads to incorrect results and affects the accuracy of

the field computation. Thus wavelets should be used locally

for a variable mesh grading in regions characterized by strong

field variations or field singularities in order to improve the

accuracy of the field computation.

This conclusion is confirmed by the results for the dispersion

characteristics of the S-MRTD scheme and the W-MRTD

scheme with wavelets in one space dimension only. For a

frequency interval up to the cutoff frequency of Yee’s FDTD

scheme, both MRTD schemes exhibit no dispersion error and

no deviation from the linear dispersion relation, respectively.

Thus for this large frequency interval, no improvement of

the accuracy due to additional wavelets is possible. The

improvements of the accuracy for larger frequencies are offset

by an increase in computer resources and the existence of

spurious solutions.

Furthermore, the complete theory for the treatment of sym-

metric anisotropic dielectric media has been presented. The

application of the MRTD schemes based on orthonormal

wavelet expansions does not allow for a localized modeling

of the material properties as in Yee’s FDTD scheme. This

results in a higher complexity of the relationship between

the electric flux and the electric field, but on the other

hand, it allows the analysis of structures with arbitrary space-

dependent permittivity,
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