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MRTD: New Time-Domain Schemes
Based on Multiresolution Analysis

Michael Krumpholz and Linda P. B. Katehi, Fellow, IEEE

Abstract— The application of multiresolution analysis to
Maxwell’s equations results in new multiresolution time-domain
(MRTD) schemes with unparalleled inherent properties. In
particular, the approach allows the development of MRTD
schemes which are based on scaling functions only or on a
combination of scaling functions and wavelets leading to a
variable mesh grading. The dispersion of the MRTD schemes
compared to the conventional Yee finite-difference time-domain
(FDTD) scheme shows an excellent capability to approximate
the exact solution with negligible error for sampling rates
approaching the Nyquist limit. Simple microwave structures
including dielectric materials are analyzed in order to illustrate
the application of the MRTD schemes and to demonstrate the
advantages over Yee’s FDTD scheme with respect to memory
requirements and execution time.

I. INTRODUCTION

HE finite difference time-domain (FDTD) method has

proven to be a powerful numerical technique in elec-
tromagnetic field computation [1], [2]. Despite its simplicity
and modeling versality, however, the technique suffers from
serious limitations due to the substantial computer resources
required to model electromagnetic problems with medium or
large computational volumes. These limitations have always
made it a matter of great interest to improve the efficiency
of Yee’s FDTD scheme and have led researchers to the
development of various hybrid FDTD techniques [3], [4]
and higher-order FDTD schemes [51, [6]. This paper is not
about improving the efficiency of conventional FDTD, but
about new time-domain schemes with highly linear dispersion
characteristics resulting in significant reductions of computer
resources.

The method of moments [7] provides a mathematically
correct approach for the discretization of integral and par-
tial differential equations. The application of the method of
moments for the discretization of Maxwell’s equations has
lead to the field theoretical foundation of the TLM method
[8], [9]. In addition, it has. been shown in [8] and [10] that
Yee’s FDTD scheme can be derived using the same approach
with pulse functions for the expansion of the unknown fields.
Since the method of moments allows for the use of any
complete set of orthonormal basis functions, the use of an
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appropriate set may lead to new time-domain and frequency
domain schemes. In literature [11], [12], the use of scaling
and wavelet functions as a complete set of basis functions
is called multiresolution analysis. In this paper we show that
the application of multiresolution analysis in the method of
moments for the discretization of Maxwell’s equations leads
to new multiresolution time-domain (MRTD) schemes.

For the derivation of the MRTD schemes, the electromag-
netic fields are represented by a two-fold expansion in scaling
and wavelet functions with respect to space. The expansion
in terms of scaling functions only leads to the S-MRTD
scheme which allows for a correct modeling of smoothly-
varying electromagnetic fields. In regions characterized by
strong field variations or field singularities, additional field
sampling points are introduced by incorporating wavelets in
the field expansions. MRTD schemes based on both scaling
and wavelet functions are denoted throughout this paper by W-
MRTD schemes. In order to obtain two-step MRTD schemes
with respect to time, pulse functions are used as expansion
and test functions in time dornain.

The S-MRTD and W-MRTD schemes are derived using
cubic spline Battle-Lemarie scaling and wavelet functions
[13], [14]. This orthonormal wavelet expansion has already
been applied successfully for the computation of electromag-
netic field problems in frequency domain [15], [16]. The
Battle-Lemarie scaling and wavelet functions do not have
compact support, thus the MRTD schemes have to be truncated
with respect to space. However, this disadvantage is offset by
the low-pass and band-pass characteristics in spectral domain,
allowing for an g priori estimate of the number of resolution
levels necessary for a correct field modeling. Furthermore, for
this type of scaling and wavelet functions, the evaluation of
the moment method integrals is simplified due to the existence
of closed form expressions in spectral domain and simple
representations in terms of cubic spline functions in space
domain.

The use of nonlocalized basis functions cannot accomo-
date localized boundary conditions and cannot allow for a
localized modeling of the material properties. To overcome
this difficulty, the image principle is used to model perfect
electric and magnetic boundary conditions. As for the de-
scription of material parameters, the constitutive relations are
discretized accordingly so that the relationships between the
electric/magnetic flux and the electric/magnetic field are given
by matrix equations. A complete dispersion analysis of the
S-MRTD and W-MRTD schemes including a comparison to
Yee’s FDTD scheme is given and shows the superiority of the
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MRTD method to all other existing discretization techniques.
Specifically, the results show the capability of MRTD to
provide excellent accuracy with up to two discretization points
per wavelength only, representing the Nyquist sampling limit.

II. THE S-MRTD SCHEME

At first, for simplicity, we will derive the S-MRTD scheme
for a homogeneous medium. The derivation is similar to that of
Yee’s FDTD scheme which uses the method of moments with
pulse functions as expansion and test functions [10]. For the
derivation of S-MRTD, the field components are represented
by a series of scaling functions in space and and pulse
functions in time. Furthermore, as for Yee’s FDTD scheme, the
field expansions of the magnetic field components are shifted
by half a discretization interval in space and time with respect
to the field expansions of the electric field components.

A. Derivation of the S-MRTD Scheme

Maxwell’s first vector equation

OE
VX H=¢c—— 1
€3 6y
for a homogeneous medium with the permittivity £ may be

written in the form of three scalar cartesian equations as

8H, OH, OF,

——— o 2
Oy 8: - ot @
0H, OH. OE,
9z ox " ot 3)
OH, 0H, _ OE. @

Oz Jdy at -

In the same way, the second Maxwell’s vector equation for a
homogeneous medium with the permeability

O0H

VX E=—p—7r 5

En &)
can be split into three scalar equations similar to (2), (3) and
(4). The electric and magnetic field components incorporated
in these equations are expanded as following
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where kEf;n and kquf::l,n with k = x,y, 2 are the coeffi-

cients for the field expansions in terms of scaling functions.
The indexes I,m,n, and k are the discrete space and time
indices related to the space and time coordinates via z =
Az, y = mAy,z = nAz and t = kAt, where Ax, Ay, Az
and At represent the space and time discretization intervals in
x-, y-, z- and ¢-direction. The function h,,(z) is defined as

hon(z) = h(& - m) (7

with the rectangular pulse function

1 for |z|<1/2

1/2 for |z| =1/2. (8
0 for|z|>1/2

h{z) =

The function ¢,,(z) is defined as
x

bm(@) = ¢( 1= —m) ©

where ¢(z) represents the cubic spline Battle-Lemarie scaling
function [13]. [14] depicted in Fig. I. Assuming the Fourier
transformation

+o0

d(\) = d(z)e??® dx (10)

and
N 11
o)== [ d0e an

respectively, the closed-form expression of the scaling function
in spectral domain is given by [17]

1

4 5 (A 2 4 (A 4 5 (A
\/1 3sm (2)—|—581n (Q)WESIH 5

(12)

with the low-pass spectral domain characteristics shown in
Fig. 2.

We insert the field expansions in Maxwell’s equations and
sample the equations using pulse functions as test functions in
time and scaling functions as test functions in space. For the

sampling with respect to time, we need the following integrals
[10]

+oo
/ hm(a:)hm/ (.’E) dzr = 5m’m1A.’IZ (13)

— o0
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Fig. 1. Cubic spline Battle-Lemarie scaling function in space domain.
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Fig. 2. Cubic spline Battle~-Lemarie scaling function in spectral domain.

where 6, m represents the kronecker symbol

1 form=m'
B = {0 for m # m/ (14)
and
Foe Ohp
/ hm(x)#(x) 4z = b/ — b1, (15)

For the sampling with respect to space, we use the orthogo-
nality relation for the scaling functions [17]

—+00
Om (T)Pm (T) dT = O ms Az, (16)

—0o0

To calculate the integral corresponding to (15) for scaling
functions, we make use of the closed form expression of the
scaling function in spectral domain. According to Galerkin’s
method [7], for complex basis functions, one has to choose
the complex conjugant of the basis functions as test functions.
We then obtain

/ " ¢m(m)_—a¢mg;/ 2(2)

-0

= % /00 |¢~S()\)|2/\sin’/\(m' -m+1/2)dx (17)
0

where ¢()) is given by (12). This integral may be evaluated
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TABLE 1

THE COEFFICIENTS a({)
a(1)
1.2918462
—0.1560761
0.0596391
-0.0293099
0.0153716
-0.0081892
0.0043788
-0.0023433
0.0012542

lm-\xmo‘.&wm»—ols.!

numerically resulting in

+oo 0b , e
qsm(x)ﬂ%i@—) de=Y" a(i)bmsrm. (18)

The coefficients a(i) for 0 < ¢ < 8 are shown in Table I, and
the coefficients a(z) for 7 < 0 are given by the symmetry rela-
tion a(—1 —¢) = —a(i). The Battle-Lemarie scaling function
does not have compact but only exponential decaying support
and thus, the coefficients a(7) for 7 > 8 are not zero. However,
we found that these coefficients are negligible, affecting the
accuracy of the field computation only for very low values of
the wave vector. We therefore use the approximation

+oc b ! +8 .
[ on@ 2D oS i

—o0 1=—9

19)

in order to obtain a MRTD scheme useful for practical
applications.

As an example, we consider the discretization of (2). Sam-
pling the term on the right-hand side of this equation, 0F, /0t,
in space and time yields
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Sampling the first term on the left-hand side, 9H_, /9y, in space
and time using the same test functions yields

il
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Proceeding in the same way with the term 0H, /Jz, we obtain
a difference equation for a homogeneous medium with the
permittivity ¢

g

oz
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In order to provide a more compact form of this equation,
we use the state-space representation for the electromagnetic
field which was originally developed for the TLM method by
Russer et al. [18]. We introduce the product space

Hm®t - Hm ® Ht (23)

and define the electric and magnetic field component vectors
|Egs) and |Hy,) with & = z, ¥,z as vectors in H,e

+oo
Bow) = > kBim o lk;lm,n) (24)
k,l,m,n:—oo
and
+oc0
He) = Y. wHim lkslmm).  (25)

klmn=—

The orthonormal basis vectors of H,,g: are given by the
ket-vectors

) =1k)®

The vectors |I,m,n) represent a system of orthonormal basis
vectors in the Hilbert space H,,,, where each node with the dis-
crete coordinates (I, m, n) is assigned a basis vector |I, m,n).
In the Hilbert space H:, the basis vector |k) corresponds to
the discrete-time coordinate k. Due to the summation of &, 1, m
and n, the electric field component vector | Eg,) combines all
electric field components kEl m.n Of the complete mesh at all
discrete-time points k. The same is true for the magnetic field
component vector |Hy,.). Thus the complete time evolution
of a field component in four-dimensional space-time may be
represented by a single vector in Hpg:t.

The bra-vector (k:l,m,n| is the Hermitian conjugate of
lk; 1, m,n). The orthogonality relations are given by

I, m,n). (26)

Yy

{ky;li,me,ma ke la, Mo, no) = kg ks Oty 15 Omy ymoOny s
(27)
To describe a shift of the field components in space and

time, we define the half shift operators X; and its Hermitian
conjugate X }: by

Xnlk;l,m,n) =kl +1/2,m.n)
X ks l,myn) =kl —1/2,m,n) = X5 ki lom,n) (28)
and the shift operators X and its Hermitian conjugate X T by
X\k;l,m,n) =k 1+ 1,m,n)
Xk l,m,n) = |kl — 1,m,n) = X Yk l,m,n). (29)
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In the same way, we define the half shift operators Y, and Z,
and the shift operators Y and Z for the spatial coordinates m
and n, the half time shift operator T';, for the time coordinate
k as well as their Hermitian conjugates.

Using the state-space representation, (22) may be repre-
sented by the operator equation

eX|Thdi|Es) = X[ T (DY|Hys) ~ DG Hg,))  (30)

where the difference operators d, D;’; and Df are defined as

L ot
T, -T
dy = At( h) €1Y)
and
D :—YJr Z a(i)Y *
i=-—9
1 +8
¢ _ _~ 7t Y &
Dt =17, Z;ga,(z)z : (32)

Proceeding in the same way with the five remaining scalar
cartesian Maxwell’s equations, we obtain five difference equa-
tions. By introducing the field vector

(33)

as a vector in the field state-space Hy [10]

Hr =C° @ Hy, @ H,y (34)

where C represents a six-dimensional complex vector space,
the six difference equations may be represented by the operator
equation

M|Fy) =0 (35)

where the operator M is given by (36), as shown at the bottom
of the page, where the operator Dﬁ 1s defined in a similar way
as the operators D;’j and D?.

The unit cell of the S-MRTD scheme, see Fig. 3, is similar
to the unit cell of Yee’s FDTD scheme. However, due to the
different field expansions, the field components in the two
schemes are not identical. While the field components of Yee’s
FDTD scheme represent the total field at a space point, the
field components of the S-MRTD scheme represent only a part
of the total field. In fact, the total field at a particular space

H?:
1-172,m-1/2,n

Rox
~1-12ma

_—t

H by
12,mn-172

H""

~lm12n-12

Fig. 3. Unit cell for the S-MRTD scheme.

point for the S-MRTD scheme may be calculated from the field
expansions, see (6), by sampling them with delta test functions
in space and time domain. For example, the z-component of
the total electric field E. (7o, t0) = E.(zo0,%0,%0,%0) at an
arbitrary space point 7 at time #o with (k—1/2)At <o < (k+
1/2)At is given by

E(7o,to) = ////E (7, 8)8(z — x0)8(y — y0)6(2 — 20)

6(t — o) dx dy dz dt

-+o00
= Z El/:-l/z me o PU-+172(20)Pm (yo)
U'm’ n'=—oc0
- dn'(20)- (37

Due to the exponentially decaying support of the Bat-
tle-Lemarie scaling function (see Fig. 1), only a few terms of
this three-dimensional summation have to be considered.

B. Dispersion Analysis

Due to the discretization in space and time, the FDTD
schemes exhibit deviations from the desired linear dispersion
behavior. In order to estimate these deviations, the dispersion
relation of a MRTD scheme has to be known. The method
for the calculation of the dispersion relation is described in
[19] and [20]. We use a general approach for the computation
of the dispersion relation which is based on the state-space
representation of the discretized electromagnetic field [8], [10].
Using this approach, the dispersion relation of the MRTD

( eXTd, 0 0 0 TIXID? -TiX|D?
0 eYiT!d, 0 ~-TIY! D¢ 0 TiY!D?
M- 0 0 eZ\T\d, TLZID? -TLZ|D¢ 0 36)
0 ~Yizlp? YiziD¢ v}z, 0 0
X}zl D? 0 -xiziD¢ 0 uXzld, 0
-X}Y.D¢ Xlyip? 0 0 0 pXiYid, |
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TABLE II

RESONANT FREQUENCIES FOR AN AIR-FILLED CAVITY

S-MRTD scheme Yee’s FDTD scheme
Analytic values (mesh size 2 x 4 x 3) (mesh size 10 x 20 x 15)
Absolute values | Relative error | Absolute values | Relative error
125.00 MHz 125.10 MHz 0.080 % 124.85 MHz ~0.120 %
180.27 MHz 180.50 MHz 0.128 % 179.75 MHz -0.288 %
213.60 MHz 214.60 MHz 0.468 % 212.40 MHz -0.562 %
246.22 MHz 248.70 MHz 1.007 % 244.50 MHz ~0.699 %
250.00 MHz 251.00 MHz 0.400 % 248.70 MHz -0.520 %
301.04 MHz 303.90 MHz 0.950 % 298.95 MHz -0.694 %
336.3¢ MHz 339.20 MHz 0.850 % 334.35 MHz -0.592 %

scheme is calculated from the solutions of the eigenvalue
problem in the field state-space.
The operator equation (35) requires

detM(Th,Xh,Yh,Zh) =0 (38)

for any nontrivial solutions in the field state-space Hg. Re-
stricting the investigations to electromagnetic fields composed
of plane waves, one obtains [10]

det M(e_19/2, e X2 gmim/2 6—]6/2) -0 (39)

where € is the normalized frequency related to the frequency
f by Q = 2rAtf = wAtf. The normalized wave vector
components x,n and £ are related to the z-, y- and z-
components of the wave vector E, kz,ky and k., by x =
Alk,,n = Alk, and § = Alk,. The evaluation of (39) yields

d() =0 (40)
and
eu(dy())% = (D2(x))? + (Dg(m))* + (D2(£))°.

The difference operator in frequency domain, d.(£2), and the
difference operators in wave vector domain, D%(x). D¢(n).
and D?(¢), are given by

1 _ 27
du(Q) = 55 (Y2 = %) = Zsin(0/2)

(41)

(42)

and
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1 +8
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i=—9

27 33 N .
= ;Oa(z) siné(i +1/2). (43)

Equation (40) represents the dispersion relation for the sta-
tionary solutions of the S-MRTD scheme corresponding to
the electro- and magnetostatic solutions, since d:(2) = 0
implies €2 = 0, while (41) represents the dispersion relation for
the solutions propagating in the S-MRTD scheme. For small
arguments, using x ~ z, (41) yields
w? 2 2 2
C—kax+ky+kz 44)
which corresponds to the exact linear dispersion relation,
when all coefficients (i) are considered. In this case. (44)
is identical to the dispersion relation of a three-dimensional
wave equation with the wave propagation velocity c.
While the stability condition for Yee's FDTD scheme for a
uniform discretization with Az = Ay = Az = Al is given
by [1]

At < 1Al = 0.57735%{

V3 ¢

the stability condition for the S-MRTD scheme results in

(45)

A
At < Atmax = 0.36811271. (46)

The latter condition may be derived by requiring that for all
wave vectors, (41) must have a solution for real frequencies
Q in order to obtain a stable MRTD scheme.

Figs. 4-6 illustrate the highly linear dispersion charac-
teristics of the S-MRTD scheme in comparison with the
dispersion characteristics of Yee’s FDTD scheme [19] for
uniform discretization. For wave propagation in (1, 0, 0)
direction and along the x-axis, respectively, we have used
77 = 0 and £ = 0. Similarly, for wave propagation in (1, 1, 0)
direction and along the diagonal in the z-y-plane, respectively,
we have used x = nand £ = 0 as well as y = 5 = £
for wave propagation in (1, I, 1) direction. In contrast to
Yee’s FDTD scheme, it is not advantageous to choose Af
at the stability limit but at about five times less. With this
choice, much more linearity of the dispersion characteristics
is achieved. In order to illustrate this linearity, in Figs. 4-6,
the same At = Atnax/5 has been chosen for both schemes.

The benefits of the highly linear dispersion characteristics
are illustrated in Table II, which shows the results for the
resonant frequencies of an air-filled cavity. The cavity has
the dimensions 1m x 2m X 1.5m. For the analysis using Yee’s
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X
1
Linear Dispersion
* Relation
____ ___Dispersion for the
S-MRTD scheme
/2

Dispersion for Yee's
FDTD scheme

Q

/20

Fig. 4. Dispersion diagram for S-MRTD for propagation in (1, 0, 0) direc-
tion.

X
n

Linear Dispersion
Relation
Dispersion for the

w2 S-MRTD scheme
Dispersion for Yee’s
FDTD scheme

Q

720 n/10

Fig. 5. Dispersion diagram for S-MRTD for propagation in (1, 1, 0) direc-
tion.

FDTD scheme, a mesh with Al = 0.1 m was used resulting in
a total number of 3000 grid points. Analyzing the cavity with
the S-MRTD scheme, a mesh with Al = 0.5m and with 24 grid
points, respectively, was chosen reducing the total number of
grid points by a factor of 125. Furthermore, the execution time
for the analysis was reduced by a factor of nine to ten using the

Linear Dispersion
Relation

Dispersion for the
S-MRTD scheme
Dispersion for Yee's
FDTD scheme

2

Q

/20 /10

Fig. 6. Dispersion diagram for S-MRTD for propagation in (1, 1, 1) direc-
tion.

S-MRTD scheme instead of Yee’s FDTD scheme. Note that
the time discretization interval At = 10710 s was chosen to
be identical for both schemes in order to exploit the linearity
of the dispersion characteristics for S-MRTD. In addition,
note that for the S-MRTD scheme, the relative error of the
resonant frequencies is always positive which corresponds to
an overestimation of the resonant frequencies. For Yee’s FDTD
scheme, the relative error of the resonant frequencies is always
negative corresponding to an underestimation of the resonant
frequencies. This is exactly what has to be expected from the
dispersion diagrams, see Figs. 4-6.

Since the use of nonlocalized basis functions does not allow
localized boundary conditions, the perfect electric boundary
conditions in a S-MRTD mesh are modeled using the image
principle. This means that the perfect electric conductor (PEC)
is replaced by an open structure with symmetric electro-
magnetic fields. In particular, the electric field components
tangential to the PEC must have uneven symmetry in order
to ensure a field distribution with zero tangential electric
fields at the original position of the PEC. Furthermore, the
magnetic field components tangential to the PEC must have
even symmetry with respect to the original position of the
PEC. In the same way, perfect magnetic conductors (PMC’s)
may be modeled assuming uneven tangential magnetic fields
and even tangential electric fields with respect to the PMC.

IIl. W-MRTD SCHEMES

In order to incorporate wavelets in the S-MRTD scheme,
we consider an additional term in the electromagnetic field
expansions using a set of wavelet functions. For simplicity,
we will consider wavelet expansion in one dimension and
in one resolution level only. Considering the wavelets for
the other dimensions and for the higher resolution levels is
straightforward. In particular, we will use additional wavelet
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ﬁ V(x)

-1

Fig. 7. Cubic spline Battle-Lemarie wavelet function in space domain.

functions with respect to the y-coordinate. In the following,
the FDTD scheme derived by this field expansion is denoted
by Wy-MRTD scheme.

A. Derivation of the Wy-MRTD Scheme

In the following, we replace the expansions of the field
components, (6), by a two-fold expansion in scaling functions
and wavelet functions with respect to the y-coordinate. Thus
we expand the field components as following
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(k+1/2Hl¢+yl/2’m’n+1/2¢m(y)

+ k+1/2Hllﬁ_yl/g,m+1/2,n+1/2¢m+l/2(y))
X Bpy12(t)big12(2) brg1/2(2)

“+oo
H.(7,t) = Z (k+1/2Hl¢;1/2,m+1/2,n¢m+1/2(y)
k,mn=—occ
+ k+1/2HlliZl/2,m.nwm(y))
X Pey1/2(t)brg1/2(®)bn(2) (47)
where kE;lT'; , and g Hy b » With & = x,y, z are the expansion

coefficients for the ﬁeld expansions in terms of wavelet
functions. The function t,,,;1/2() is defined as

Ymi1ja() = (= —m) (48)

z)=¢Y|l-——-m
m+1/2 Az
where v(x ) represents the cubic spline Battle-Lemarie wavelet
function [13], [14] depicted in Fig. 7. Note that the scaling
function has an even symmetry with respect to z = 0,
whereas the wavelet function has an even symmetry with
respect to 2 = 1/2. This is the reason why we have denoted
the expansion coefficients for the wavelet expansions with an
index m’ = m + 1/2, where m represents the index for the
scaling function expansion coefficients. Note that in order to
include the resolution level £, one has to add the expansion in
terms of the wavelet functions
'L )
z

with s = 1,2,---,¢.

¢5,m+1/2(x) = 25/2¢(2
The closed form expression of the wavelet function in
spectral domain is given by [17]

(49)

j)\/Z ¢()‘ + 27r) 7
4~_¢>(A/2+7r)¢()\/2)

2 A AN
M2l Zgnl & Z
4 2
\/1—§sin2 (%)+g$ln4 (%) ———?-’illgsin

P(A) =
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Fig. 8. Magnitude of the cubic spline Battle-Lemarie wavelet function in spectral domain.
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1 3sm <4)+581n (4)

Fig. 8 exhibits the band-pass characteristics of the wavelet
function. In the interval |A| < 2, the magnitude of the function

(k) is nearly zero. Thus in this interval, the scaling function
alone yields a correct representation of the electromagnetic
fields which is reflected in the dispersion characteristics of the
S-MRTD and Wy-MRTD scheme. It will be shown in the next
subsection that for a large frequency interval, the dispersion
characteristics of both MRTD schemes exhibit no dispersion
error and no deviation from the linear dispersion relation, re-
spectively. However near discontinuities, the electromagnetic
fields contain parts with higher spectral frequencies which calls
for additional wavelets to be taken into account in order to
calculate the ficlds correctly.

Again, we insert the field expansions in Maxwell’s equa-
tions and sample the equations using pulse functions as test
functions in time. With respect to space, we use scaling and
wavelet functions as test functions. In addition to the integrals
(13), (15), (16), and (19), we need to apply the orthogonality
relations [17]

e

+o00

Y ()P (2) d = Sy s Az (51)

and

[

/_ ()b 11/72(x) dz = 0. (52)

Furthermore, using the closed form expressions of the scaling
and wavelet function in spectral domain, (12) and (50) requires

the calculation of the integrals
400

' @Dm( )81/Jm +1/2(~”) da

- % / GOV A sin A(m/ + 1/2 — m) dA
0

oo N +1/2( )

§bm( ) dz

- ;/0 FOVBOA sin A(m/ + 1 — m) dA

too Az
Y () 6@5—3;() dx

= %/w NP\ Asin A(m! —m) dX.  (53)
0

These integrals may again be evaluated numerically resulting
in the approximations

too W 41/2()

+8
Ym(2) 5 ds~ Y b(i)s

m+i,m/’
1=—9

8¢m'+1/2($) dr =~ 32

Sz Z C(":)‘Sm—l-i,m’-f-l

+9
¢m(x)%g‘73’6(“’) dz~ Y e(D)ompim  (54)

—0o 1=—9

—0o0

4o

Pm(T)

-0

+o0

where the coefficients b(¢) and c(¢) for 0 < ¢ < 8 are shown
in Table III. The coefficients b(¢) and ¢(3) for i < 0 are given
by the symmetry relations b(—1 — i) = —b(2) and ¢(—i) =
—c(z). Due to the exponentially decaying support of the
Battle—Lemarie scaling and wavelet function, the coefficients
b(4) for i > 8 and c(i) for 7 >9 do not affect the accuracy of
the field computation significantly.

As an example, let us again consider the discretization of
(2). Sampling the term on the right side, E,, /9t, with scaling
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TABLE I
THE COEFFICIENTS (i) AND (1)
: b() )
0| 2.4725388 0.0
11 0.9562282 | -0.0465973
21 0.1660587 | 0.0545394
31 0.0939244 | -0.0369996
41 0.0031413 | 0.0205745
5| 0.0134936 | -0.0111530
6 | -0.0028589 | 0.0059769
7| 0.0027788 | -0.0032026
8 | -0.0011295 | 0.0017141
9 -0.0009177

functions in space and pulse functions in time yields

NI

= (k+1El+1/2,rn,n

()b (Y) B (2)hsr1/2(t) dz dy dz dt

kE AxAyAz. (55

+1/2.m, n)

Sampling the same term using wavelet functions with respect
to the y-coordinate and scaling functions in space domain as
well as pulse functions in time domain yields

IF

- 2 w2
= (k+1El+1/2‘m+1/2.n - kEl+1/2,m+1/2,n

bra j2(2) Vg1 /2(Y) P (2) hryr j2(t) dz dy dz di

YAz AyAz.
(56)

Applying the same test functions in order to discretize
OH, /0y, we obtain

iy

+8

— : Pz

= (Z a(Der1/2H7Y 1 o et 1/2m
1=—9

-y i

1=—9

)b (Y)br(2)higr2(t) d dy dz di

k+1/2HZ+1/2 m+i n) AzAzAY (57)

¢l+1/2 )T/Jm+1/2(y)¢n(z)hk+1/2(t) dz dy dz dt

G,

= ( Z C(Z)k+1/2Hl+1/2 m+1+1/2,n

1=—9
+8

+ Z b(l)k+1/2H;p:1/2,m+i+1,n> AzAzAt.  (58)
i——9

We proceed in the same way with the term 0 H,,/0z and obtain
the two difference equations

£ o) o)
E(k+1El—fl/2,m,n El—i:—tl/Z m, n)
1 +8 .
~ Ay Z a(Dkr1/2Hi Y1 j2 mviv1jom
1=-9
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1
il ; HY*
+ Ay Zg_:gc(z)kﬂﬂ I41/2mAdo,n
+8
- ¢
Za’(z)k+1/2Hlf1/2,m,n+z+l/2 (39

1=
and

El+1/2 m+1/2, n)

€ P
Kt'(k+1El+x1/2,m+l/2,n k
1 X 5
= A_y Z C(Z)k+1/2Hl-ifl/2,m+z+1/2,n
2=—9
1 +8
Zb k+1/2Hl+1/2m+1+1n
L——9
1 &

. W
Z a(z)k+1/2Hlf1/2,m+1/2,n+i+1/2- (60)

Defining the electric and magnetic field component vectors

+oo
Eye) = > kBl Ikl m,n) 61)
k.lm,n=—oc0
and
o0
Hye) = > kHin lkslomn) (6D
k,l,mn=—cc

with ¥ = x,y, 2z as vectors in H.,,g+, We can represent (59)
and (60) by the operator equations

eX|Thdi| Bge) = X[ T1(D§|Hoz) + Dy Hyz) — DE|Hgy))

63)
and
X\ YT dy|Byo)
= X{YITH(DI Hy) + DY|Hy,) - DY Hy,)). (64)

The difference operators D;p and Dé are defined as

1 +8
DY =—YI > by
Yy Ay hi:_g ( )
1 +9
I . —1
Dy =%, E_:g c(BY " (65)

Since the operator D; describes the interaction between the
scaling and wavelet function expansion coefficients. we use the
index I to denote this operator. Proceeding in the same way
with the five remaining scalar cartesian Maxwell’s equations,
we obtain another ten different equations.

The unit cell of the Wy-MRTD scheme is depicted in Fig. 9.
The number of independent field variables per unit cell is
twelve which is twice as much as for Yee’s FDTD scheme
and the S-MRTD scheme. The total field at a particular space
point for the Wy-MRTD scheme may be calculated from the
field expansions (47) by sampling the expansions using delta
test functions in space and time domain, e.g., the x-component
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Fig. 9. Unit cell for the Wy-MRTD scheme.
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Fig. 10. Dispersion diagram for Wy-MRTD for propagation in (0, 1, 0)
direction.

of the total electric field F (7o, to) at the arbitrary space point
7o at time to with (k—1/2)At < to < (k+1/2)At is given by

/// E.(7,t)6(z — 20)8(y — y0)8(z — 20)

6(t —to) dz dy dz dt
—+o00

>

Um/ n'=—oco

E(7,t0)

(kEl'+1/2 m e P (yo)

+ kE#—T—l/Z,m’+1/2,n'¢m'+1/2(yo))
“Pr41/2(%0)Pn (20)

where, due to the exponentially decaying support of the
Battle—Lemarie scaling and wavelet functions (see Figs. 1 and
7), only a few terms of the three-dimensional summation have
to be considered.

(66)
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Fig. 11. Dispersion diagram for Wy-MRTD for propagation in (1, 1, 0)
direction.
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Fig. 12. Dispersion diagram for Wy-MRTD for propagation in (1, 1, 1)
direction.

B. Dispersion Analysis

For the evaluation of (39), we have to calculate the deter—
minant of a 12 x 12 matrix resulting in

() = 0 67)

and
22 (de())* — en(de(2))*(2D2,(x, &) + DE(n))
+ (D2,(x, 8))* + D2.(x, §)D%(n) + (Dj(m))*

— 2D (n)Dy (n)(Dy(n))* + (D (n) Dy (n))* = 0
(68)
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Fig. 13. Magnitude of the x-component of the electric field in frequency domain calculated by S-MRTD.

with
D2(n) = (DJ(m)* + 2(Dy(m)* + (DY (n))* (69)
and

D2,(x,€) = (D(x))* + (D2(6))*. (70)

The difference operators DY and D] in wave vector domain
are given by

8
2
DY = JZ; 3" bi) sinn(i +1/2)
1=0
9 9
Dl = —Jy- 3" (i) sin . 1)
g=1 :

Equation (67) represents the dispersion relation for the sta-
tionary solutions of the Wy-MRTD scheme corresponding to
the electro- and magnetostatic solutions, while (68) represents
the dispersion relation for the solutions propagating in the
Wy-MRTD scheme. For small arguments, using z =~ z and
considering all coefficients a(2), b(z) and c(7), (68) yields

(“’—2 _ k2 —k2—k2) (“’—2 ~ k2 — 49k? —kZ) =0 (72)
2 z Y z c2 x| Y z )
indicating the existence of spurious modes similar to those in
the TLM scheme with symmetrical condensed node [21], [22].

Choosing a uniform discretization, the stability condition
for the W-MRTD scheme based on wavelet functions in all
three dimensions is given by

Al

At < 0.253064?. (73)

Figs. 10-12 illustrate the effect of adding wavelets with re-
spect to the y-coordinate. To keep all dispersion diagrams
consistent, for the W-MRTD and for the FDTD scheme, we
have chosen the same At = Afpay/5 as in Figs. 4-6. In
contrast to the dispersion diagrams shown in the previous
section, we have depicted the curves for the whole period
of the normalized wave vector component in order to give
a better insight in the nature of the dispersion curves. For
wave propagation in (0, 1, 0) direction and along the y-axis,
respectively, we have used x = 0 and £ = 0. Since there are no
wavelets in the direction of the x-axis, the dispersion diagram
for wave propagation in (1, 0, 0) direction is identical to Fig. 4.
The use of wavelets with respect to the y-coordinate results
in a further increase of linearity of the dispersion relation for
wave propagation in this direction. However, there is now a
second branch of the dispersion curve in the interval 0 < £ <=
and 0 < Q <7 which is necessary to maintain the symmetry
of the dispersion curve with respect to y. This second branch
causes unphysical or spurious solutions for small frequencies
and small wave vectors as indicated by (72).

To demonstrate the existence of the spurious modes, we
analyze the same cavity as in the previous section. However, to-
keep things simple, we choose a mesh with Az = 0.5m, Ay =
1 m and Az = 0.75 m resulting in a mesh with only eight
grid points. Figs. 13 and 14 depict the magnitude of the z-
component of the electric field in frequency domain calculated
by S-MRTD and Wy-MRTD. Since for the S-MRTD mesh,
there is only one z-component of the electric field in the
direction of the y- and z-axis, only the TEq 11 and TE; g ;
mode can be detected. However, the accuracy of the resonant
frequencies is still excellent. For the first resonant frequency,
the numerical value is 125.15 MHz and the relative error
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Fig. 14. Magnitude of the z-component of the electric field in frequency domain calculated by Wy-MRTD.
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0.12%. For the second resonant frequency, the numerical value
is 195.6 MHz and the relative error 0.176%. Note that for the
TE1,1,1 mode, the electromagnetic fields are modeled by a
minimum of discretization points. E.g. for the z-component of
the electric field, the field distributions in y- and z-direction
are modeled by one field component and the field distribution
in z-direction by only two. Thus the result for this resonant
frequency demonstrates the capability of achieving excellent
accuracy for a ratio of the space discretization interval and the
wavelength close to one over two and close to the Nyquist
sampling limit, respectively. ‘

The results for the Wy-MRTD scheme include another two
resonant frequencies. These two resonant frequencies represent
solutions ‘which are spurious as it can be proven using the
dispersion relation (68). Inserting the values for the wave
vector components of the TEq 1,1 mode, the dispersion relation
yields the two frequencies 125.15 MHz and 237.42 MHz,
which are identical with the numerical results of 125.15 MHz
and 237.40 MHz. The same identity holds for the TE; 1

Fig. 15. Cavity half-filled with dielectric material.

mode, for which the dispersion relation yields 195.57 MHz

~and 281.10 MHz and the numerical analysis 195.55 MHz and

281.10 MHz.

Note that the relative error for the resonant frequency of the
TEy,1,1 mode is identical for both FDTD schemes, whereas
for the TE; ;; mode, there is a slight improvement to a
relative error of 0.151% for the Wy-MRTD scheme. This is
in agreement with the dispersion diagrams: For a frequency
interval up to the cutoff frequency of Yee’s FDTD scheme
[10], the dispersion characteristics of the S-MRTD and Wy-
MRTD schemes exhibit no dispersion error and no deviation
from the linear dispersion relation, respectively. For larger
frequencies, the dispersion error is slightly less for the Wy-
MRTD scheme. However, this small improvement with respect
to the accuracy of the resonant frequencies is offset by the
increase in computer memory by a factor of two and the
increase in execution time by a factor of 3.6. This increase
in computer resources and the existence of spurious solutions
in an infinite W-MRTD mesh indicate that wavelets should
only be used locally in regions characterized by strong field
variations or field singularities. In the next section, we will
demonstrate the benefits of additional wavelets by analyzing
a microwave structure with a discontinuity of the material
properties.

IV. MODELLING SYMMETRIC
ANISOTROPIC DIELECTRIC MEDIA

In order to model symmetric anisotropic dielectric media,
we separate Maxwell’s first vector equation (1) in

oD

VxH= 5 74)
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and
D =e(F,t)E (75)

where D represents the electric flux vector and &(7,¢) the
space- and time-dependent permittivity tensor. Equation (74)
together with (5) is discretized as described in the two previous
sections. In the following, we will describe how to discretize
(75) using the method of moments. Note that symmetric
anisotropic magnetic media may be treated in the same way
by separating Maxwell’s second equation (5) in one partial
differential equation and one equation describing the material
properties.

In the principal coordinate system. the permittivity tensor £
for symmetric media is given by

e-(7,1) 0 0
g(7,t) = 0 gy(7,1) 0 (76)
0 0 e, (7, 1)

In this case. (75) may be written in the form of three scalar
cartesian equations as

D, = e, (7, t)E, a7
D, =¢,(F,1)E, (78)
=, (P H)E,. (79)

At first, we consider the discretization of (77)—(79) for field
expansions using only scaling functions in space domain.
Assuming that the field expansions of the electric field com-
ponents are given by (6), the elesiric flux components have to
be expanded in a consistent manner as shown below

4 oo
. _ Pz
D, (7,t) = E kD111 /2m 2P

kJl,m.n=—cc

+o0
Dy(rt) = Z kDifgn—}-l/Z,’nhk

k,l,m,n=—oc0

: ¢m+1/2(y)¢n(z)

+ oo

DRty = > kD{ k(D)
k,l,m,n=—co

* G (Y)Pntr/2(2) (80)

k(t)Pri1/2(x)

(t)¢u(x)

where th mon with kK = z,y, z are the expansion coefficients
for the field expansions in terms of scaling functions.

We insert the field expansions in (77)—(79) and sample the
equations using pulse test functions with respect to time and
scaling test functions with respect to space. Assuming

ex(Tit) = eo(m)en(y)en(2)en(t) (81)
and sampling e.g. (77) with ¢y41/2(2)Pm (y)Pn(2)hi(t) yields
¢ — 2 ¢
le—ig-vl/Z,m,n = Z E(::)l+1/2,l’+1/2€(;)m,m'

k' m! n'=—oc0

oz bz
) 5(z)n,'n,’el(zi‘)k, k’k'El/+1/27m/7n/ (82)

TABLE IV
THe COEFFICIENTS B, AND (',

1 B, C,
0 1.86976160

1 | -0.67243039 | 2.89173391
2 0.26870415 | -2.00521039
3 | -0.11851986 | 0.54227884
4 0.05519138 | -0.01207123
5 |-0.02652026 | 0.14408849
6 0.01299809 | -0.14591233
7 1-0.00645742 | 0.00301822
8 0.00323979 | 0.02834407
9 |-0.00163770 | 0.01914911
10 | 0.00083276 | -0.02246183

where 5?;)7” oy and sft) s are integrals given by

1
i = 2= [ IR ln) d (©3)

and

1
Defining the electric flux component vectors
+oo
Do) = Y. kDfn lksl,m,n) (85)
k,l,mn=—cc

as vectors in H,,q:, (82) may be represented by the operator
equation

X} 1Dgs) = X €4l Eoa). (86)
The operator €4, is given in dyadic notation by
4o 400
Epr — Z Z |k§lamvn>€(g);)l,l/
kiImmn=—cok/ I’/ m' n'=—cc
. V?yx)m m,s(z)n W€, w KU, m! nl. (87)

The operator equation (86) represents the general discretization
for time- and space-dependent symmetric anisotropic dielectric
media. Note that the integral with respect to time may also
be evaluated in frequency domain allowing the modeling of
frequency-dependent dielectric media described by &(7, w).

For the evaluation of the integrals (83), we use a sim-
ple representation of the scaling function in terms of cubic
spline functions [16]. The cubic spline Battle-Lemarie scaling
function in space domain may be expressed as

“+oo
= > BiB(z—1) ¢

1=—00

where the cubic spline function B(z) is defined as

2 P A
- L <
3% + 5 for |z| <1
-J1
B(z) = s@—lz)  fori<lz<2 )
0 for |z| > 2.
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RESONANT FREQUENCIES FOR A CaviTy HALF FILLED WITH DIELECTRIC MATERIAL

Analytic values

S-MRTD scheme
(mesh size 2 x 4 x 3)

Yee’s FDTD scheme
(mesh size 10 x 20 x 15)

569

Absolute values | Relative error | Absolute values | Relative error
18.627 MHz 18.715 MHz 0.472 % 18.615 MHz -0.065 %
27.172 MHz 27.350 MHz 0.654 % 27.140 MHz -0.119 %
29.375 MHz 29.580 MHz 0.699 % 29.215 MHz -0.544 %
35.069 MHz 35.280 MHz 0.601 % 34.970 MHz -0.283 %

Table IV gives some of the expansion coefficients B;. Usually,
the coefficients B; for 4 > 9 will be negligible. The coefficients
B; for ¢ < 0 are given by the symmetry relation B, = B_,.
Table V exhibits the results for the first four resonant
frequencies of the cavity depicted in Fig. 15, where one half
is filled with dielectric material with a relative permittivity of
ey = 64 and the other half is filled with air. The cavity has
the dimensions 1m X 2m X 1.5m. For the analysis using Yee’s
FDTD scheme, a mesh with Al = 0.1m was used resulting
in a total number of 3000 grid points. Analyzing the cavity
with the S-MRTD scheme, a mesh with Al = 0.5m was
chosen reducing the total number of grid points by a factor
of 125. The time discretization interval At = 0.9 - 10~ %
was again identical for both schemes as well as for the Wy-
MRTD scheme used later on. In comparison with Yee’s FDTD
scheme, the execution time for the analysis using the S-MRTD
scheme was reduced by a factor of nine to ten. Modeling the
cavity depicted in Fig. 15, the nonzero matrix elements of the
permittivity tensor in cartesian components are given by

ex(Fyt) = ex(y). 90)

For e.(y), considering the image principle and a periodic
structure with respect to the y-coordinate, respectively, we use

|1 for yo(2N — 1) <y <2yoN
enly) = { 64 for 200N <y<yo2N+1) OD
with N = —o0,--+,~1,0,1,---,00. The cavity is centered at

y = 0 and has the length yq with respect to the y-coordinate.
The operator €4, reduces to

+oo
Cm= Y, Im)els, o (ml. (92)

Now the operator equation (86) gives rise to a linear matrix
equation which can be inverted before program execution.
Note that the use of

_J1 fory<0‘
an(y)—{64 fory>0 ©3)

simplifies the evaluation of the integral (83), however it
provides only an approximation of the correct matrix equation,
since the mesh is so small that some major mairix clements
have to be neglected. Note that for larger meshes, the use of
(93) yields results with good accuracy when a matrix of the
size 7 x 7 and larger is used.

We consider the discretization of (77) for field expansions
with scaling and wavelet functions in space domain. With

respect to the cavity half-filled with diclectric material, one
can only expect an improvement for the accuracy of the
resonant frequencies by adding wavelets with respect to the
y-coordinate: The field distribution of the modes are a product
of the field distributions in z-, y- and z-direction. The spec-
tral representations of the distributions in z- and z-direction
contain only parts with low spectral frequencies. Thus the
field expansions in terms of scaling functions allow a correct
modeling of these distributions. The spectral representation
of the field distribution in y-direction, however, does contain
parts with high spectral frequencies due to the discontinuity
at y = 0. Therefore, additional wavelets with respect to the
y-coordinate have to be introduced to ensure a correct field
representation.

Adding wavelets with respect to the y-coordinate, we ex-
pand the electric field components according to (47). Using
similar field expansions for the electric flux components, we
sample (77) with the functions ¢y41/2(x), dm(y), $n(2) and
hi(t) as well as with ¢y1.1/2(2), Pmy1/2(Y), dn(z) and hy(t).
Assuming a permittivity tensor according to (90), we obtain

+oo
Pz _ pz ¢z
k‘DH—l/Z,m,n - Z (E(y)m,m’ kEl+1/2,m’,n

mi=—o0
I 12
+ €(;;E)'m,rn’—|--1/2 kEl-:l/?,m’-}-l/Z,n) (94)
and
+co
{1 — I bz
sz+1/2,m+1/2,n - Z (E(;)m’,m+1/2 ’“El+1/2,m’,n

m/=-—o00

7 P
+ E(yw)m+1/2,mf+1/2 kEl-:l/Q,m’+l/2,n)
(95)

with the integrals

Lo = 2 | mWen (o) A 96)
and

sf,f)m’m, = i/gﬁm(n)sm(n)wmz(ﬁ) dk. N

Introducing the vectors

—+o00
IDyw) = > kD{5 lksl,m,n) (98)

k,l,mn=—o0
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TABLE VI
RESONANT FREQUENCIES FOR A CAVITY
HALF-FILLED WITH DIELECTRIC MATERIAL

Wy-MRTD scheme
(mesh size 2 x 4 x 3)

Analytic values

Absolute values | Relative error
18.627 MHz 18.640 MHz 0.069 %
27.172 MHz 27.240 MHz 0.249 %
29.375 MHz 29.470 MHz 0.324 %
35.069 MHz 35.175 MHz 0.302 %
as well as the operators
+oo
o= D Ml ] (99)
and
“+o0
erm= 3 |m)e(Bp (] (100)
Equations (94) and (95) may be represented as
X[ Do) = X} es2|FBge) + X}erz| By (101)

and
XY | Dye) = X1V 10| Epe) + XLV | €| Bpe). (102)

A simple representation of the wavelet function in space
domain in terms of cubic spline functions [16] allows an
easy numerical evaluation of the integrals in (96) and (97).
The cubic spline Battle-Lemarie wavelet function may be
expressed as

“+o0
P(z)= Y C.B(2z-1i)

i=—00

(103)

where some of the expansion coefficients C; are given by Table
IV. The coefficients C, for i < 1 are given by the symmetry
relation C, = C5_,.

The results for the resonant frequencies of the cavity with
dielectric material using the Wy-MRTD scheme are shown in
Table VI. In comparison to the results calculated by the S-
MRTD scheme, the accuracy of the resonant frequencies is
increased by a factor of two and more. On the other hand,
there is an increase of the computer memory and execution
time by a factor two and three. These results confirm that
wavelets should be used locally in regions characterized by
strong field variations in order to improve the accuracy of the
field computation.

V. CONCLUSION

MRTD schemes based on orthonormal wavelet expansions
have been derived and applied in the numerical analysis of
simple microwave structures. The new schemes exhibit highly
linear dispersion characteristics which result in the capability
of providing excellent accuracy for a discretization close to the
Nyquist sampling limit. Thus the minimum discretization for

accurate MRTD results is close to two points per wavelength,
whereas it is usually about ten points per wavelength for
accurate FDTD results. This explains why the results for
FDTD and MRTD exhibit about the same accuracy while
using a MRTD mesh with five times less grid points per
dimension. In comparison with Yee’s FDTD scheme, our
three-dimensional examples suggest computer savings of one
order of magnitude with respect to execution time and two
orders of magnitude with respect to the memory requirements.

It has been shown that the use of scaling functions in the
method of moments leads to the S-MRTD scheme which al-
lows a correct modeling of the electromagnetic fields provided
their representation in spectral domain does not contain parts
with high spectral frequencies. When the spectral domain
representation of the fields does contain parts with high
spectral frequencies, additional wavelet functions have to
be considered. It has been demonstrated how to include
wavelets in order to derive W-MRTD schemes based on
both scaling and wavelets functions. However, these schemes
are not efficient in the electromagnetic field modeling of
homogeneous regions. Furthermore, the existence of spurious
solutions leads to incorrect results and affects the accuracy of
the field computation. Thus wavelets should be used locally
for a variable mesh grading in regions characterized by strong
field variations or field singularities in order to improve the
accuracy of the field computation.

This conclusion is confirmed by the results for the dispersion
characteristics of the S-MRTD scheme and the W-MRTD
scheme with wavelets in one space dimension only. For a
frequency interval up to the cutoff frequency of Yee’s FDTD
scheme, both MRTD schemes exhibit no dispersion error and
no deviation from the linear dispersion relation, respectively.
Thus for this large frequency interval, no improvement of
the accuracy due to additional wavelets is possible. The
improvements of the accuracy for larger frequencies are offset
by an increase in computer resources and the existence of
spurious solutions.

Furthermore, the complete theory for the treatment of sym-
metric anisotropic dielectric media has been presented. The
application of the MRTD schemes based on orthonormal
wavelet expansions does not allow for a localized modeling
of the material properties as in Yee’s FDTD scheme. This
results in a higher complexity of the relationship between
the electric flux and the electric field, but on the other
hand, it allows the analysis of structures with arbitrary space-
dependent permittivity.
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